Light Stress Is Not Effective to Enhanced Crassulacean Acid Metabolism

Andrzej Kornas^a, Zbigniew Miszalski^{a, b,*}, Ewa Surówka^b, Elke Fischer-Schliebs^c, and Ulrich Lüttge^c

- Institute of Biology, Pedagogical University, ul. Podbrzezie 3, 31-054 Krakow, Poland
 Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Krakow, Poland. Fax: +48-12-4251844. E-mail: miszalski@ifr-pan.krakow.pl
 Institute of Botany, Darmstadt University of Technology, Schnittspahnstrasse 3-5, D-64287 Darmstadt, Germany
- * Author for correspondence and reprint requests

Z. Naturforsch. 65 c, 79–86 (2010); received September 10/October 21, 2009

Clusia minor L., a C₃-CAM intermediate, and Clusia multiflora H. B. K., a C₃ obligate, present two physiotypes of a similar morphotype occurring sympatrically in the field. Both species, exposed 2 days to high light, show similar responses to this kind of stress: (i) the level of xanthophyll pigments in tested plants during the daycourse adapts to stress, (ii) the levels of antheraxanthin and zeaxanthin clearly increase during the afternoon showing increased de-epoxidation, (iii) the changes in the xanthophyll cycle are similar. Exposure to high light increases the malate levels in C. minor during the afternoon while decreases the day/night changes of the malate levels, and hence the Crassulacean Acid Metabolism (CAM) expression. It can be concluded that strong light applied as a single stress factor to well-watered plants is not effective in strengthing the CAM metabolism in a C₃-CAM intermediate plant but rather suppresses the CAM activity despite exposure to high light energy. It is suggested that, when water supply is not limiting and other stresses do not prevail, C₃ allows to use up the citrate pool, especially in the afternoon and enables a superior daily photon utilization.

Key words: Oxidative Stress, Xanthophyll Cycle, Clusia